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ABSTRACT 

A systematic procedure has been developed for exploiting 

the parallel constructs of computation in a highly coupled, 

linear system application. An overall top down design approach 

is adopted. 

Differential equations governing the application under 

consideration are partitioned into subtasks on the basis of a 

data flow analysis. The interconnected task units constitute a 

task graph which has to be computed in every update interval. 

Multiprocessing concepts utilizing parallel integration 

algorithms are then applied for efficient task graph execution. 

A simple scheduling routine has been developed to handle task 

allocation while in the multiprocessor mode. 

Results of simulation and scheduling are compared on the 

basis of standard performance indices. Processor timing diagrams 

have been developed on the basis of program output accruing to 

an optimal set of processors. 

Basic architectural attributes for implementing the system 

is discussed together with suggestions for processing element 

design. Emphasis has been placed on flexible architectures that 

are capable of accommodating widely varying application 

specifics. 

v i i i  
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INTRODUCTION 

1.1 Background: 

Real-time application algorithms are characterized by complex 

and time consuming computations suitable for processing in large 

mainframes and associated machines. 

constraints would favor the development of small multiprocessor 

machines that are capable of exploiting the inherent parallel 

constructs of computation [l] .  With decreasing hardware costs a 

large number of processors may be grouped together to form 

specialized processing clusters or modules 121. Flexible 

customization methodology may serve to utilize these specialized 

hardware modules to achieve computational speeds that are beyond 

the limits of uniprocessor sequential methods. 

in computing power accompanied by the drastic reduction in cost, 

makes parallel processing in multiprocessor environment a 

viable option for the critical timing constraints of real-time 

applications. 

However cost and space 

The vast increase 

1.2 Objective: 

The objective of this research is to develop a systematic 

procedure for evolving a computational model that is 

1 
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particularly amenable for parallel processing in a 

multiprocessor environment. An overall top-down approach (see 

Figure 1.1) is adopted. Any real-time system may be represented 

in general by a set of differential equations which govern the 

dynamic behavior of the system. As a specific example, a 

prototype real-time control problem is modeled as a set of 

differential equations. These are mapped onto a task graph which 

is then allocated to a set of processors in accordance with an 

allocation algorithm. This is followed by a verification and 

comparison stage wherein the results of such a mapping are 

compared with that of traditional uniprocessor methods in terms 

of speed up ratio, efficiency and average processor utilization. 

Finally, hardware schemata are included for processors and their 

design . 

1.3 Research Phases: 

Research was conducted in the following phases: 

1) Problem Identification 

2) Task Graph Development 

3)  Scheduling and Simulation 

4) Hardware and software issues 

A few simplistic assumptions were made throughout the 

overall research. Interprocessor communication time was 

neglected in all cases. Although the author acknowledges that 

this is not a very practical assumption, the overall performance 

improvement would not be greatly undermined even if such delays 

are taken into account. Finally , an inexhaustible supply of 



APPLICATION REAL TIME TRACKING PROBLEM 

TASK GRAPH 0 
SCHEDULING AND ALLOCATION 
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HARDWARE STRUCTURES 

Figure 1.1 Overview of Research Project 
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hardware resources has been assumed. The number of available 

processors has been treated as a variable parameter which may be 

optimized to obtain maximum speed of execution. It is this 

singular fact that makes a flexible architecture the best 

hardware support for this project. 



APPLICATION AND MODEL DEVELOPHEHT 

A vast majority of real time control problems can be 

represented by a stochastic system of equations and an 

associated cost function or performance index. The dynamic 

behavior of the system is modeled by a set of linear state 

equations of the form: 

;( t)=A( t)x(t)+B( t)u( t) 

The major objective in such a system model is to obtain the 

optimal control law by minimizing the overall cost function 131.  

2.1 Problem Identification 

A typical class of optimal control problems are of the 

tracking type. These are primarily concerned with constraining 

the motion of a body in a defined trajectory and are widely used 

in attitude control of rocket, missile guidance, aircraft 

landing analysis etc. The cost function to be minimized for 

optimal control is commonly represented as: 

5 
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Modern control theory suggests two principle ways of 

solving such problems (Appendix A). One convenient technique is 

the generation of a set of first order differential equations 

known as the Matrix Ricatti Differential Equations (see Figure 

2.1) having a form : 

K=-K( t)A( t)-AT( t)K( t)-Q( t)+K( t)B( t)R-'( t)BT( t)K( t) 

;( t)=- [AT( t)-K(t)B( t)R'l( t)BT(t)]s( t)tQ( t)r( t) 

It may be easily proved that if K is a "n by n" symmetric matrix 

and s is a % by 1" vector , then the above matrix equations 

reduce to a set of "n(n+l)/2+n" first order differential 

equations which have to be solved in real time.With large values 

of "n" as is true for most practical systems ,-an inconveniently 

large set of equations is obtained. Even with available current 

technology, it requires a mini supercomputer to perform the 

necessary computations. 

2.2 Solution Methods 

Several standard software routines using Runge Kutta 

Method, Adams Bashforth Method is available for solving 

differential equations and may be applied to the solution of 

Matrix Ricatti Equation. However, these are sequential 

techniques with a set limitation on execution speed. By 

employing parallel integration algorithms (PIA) it is possible 

to obtain a greater throughput while maintaining the same level 

of accuracy [ 4 ] .  The method presented here is a modified version 

of that proposed by Willard L. Miranker and Werner Linigar [5]. 
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K IS SYMMETRIC MATRIX 
s IS A N BY 1 VECTOR 
A SET OF N(N + 1)/2+ N FIRST 
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FIGURE 2.1 Overall Problem Representation 
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A modification is necessary as the aforementioned authors 

developed their algorithm for standard differential equations 

which are typically initial value problems as opposed to the 

Matrix Ricatti Equations where the integration has to be carried 

out backwards in time. 

2.3 Parallel Integration Algorithm 

A widely used technique for solving differential 

equations is the Adam Bashforth Predictor Corrector (ABPC) 

method. For a general problem of the type 

the differential equations for a two step ABPC method are given 

YC*-l + h/2 [ 3 f cn- 1 fen-2 I 

where h = step increment = % / (n-1); 

It is apparent that the predicted value at the (nIth step 

is used in the next step to compute the corrected value at the 

(n)th step. 

Figure 2 .2 ) .  The "P" and "C" lines denote the predicted and 

corrected values of the function. A hypothetical computation 

front is indicated by means of a dotted line. The directed line 

segments display that at the (nlth mesh point , results flow in 

from both sides of the computation front thereby precluding any 

chances of simultaneous prediction and correction. 

The sequence of computation is schematized (see 
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A suitable modification converts this sequential technique 

into an effective PIA. The modified equations are: 

The computation front and associated sequence of 

computation are shown (see Figure 2 . 3 ) .  The arrows indicate that 

calculation at any step depends only on information at previous 

mesh points. This implies that the parallel implementation 

simultaneously accommodates prediction at the (nlth step and 

correction at the (n-llth mesh point and thus may be executed in 

parallel on two arithmetic processors. 

Application of this technique to the solution of Matrix 

Ricatti equations necessitates the computation front to proceed 

backward in time. For this purpose the aforementioned parallel 

differential equations are modified to yield : 

9'n-2 

The corresponding computation front has also been shown 

Figure 2 . 4 ) .  

(see 

2.4 The Prototype Roblem 

A prototype reflects an actual problem area with all its 

attributes but in smaller dimensions. It provides the researcher 

with a congenial environment to experiment novel schemes. In 
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this thesis, a prototype tracking problem has been considered so 

as to illustrate the basic concepts and ideas that were 

developed in course of research. 

The system to be controlled is assumed to be represented by 

two state equations: 

= q(t) 

The performance index to be minimized is 

J(U) = - 0.2tI2 + 0.025u2(t)}dt 

In this problem the major objective is to maintain the 

state x1 close to the ramp function rl(t) = 0.2t. The Matrix 

Ricatti equations for such a system are : 

si(t) = 2 [ 10 k12(t) - 1 ] ~2(t) + 0.4t 

All the equations in the above set are cross coupled. 

However, the computational parallelism inherent in the equations 

may be exploited to obtain a higher throughput. This is 

discussed in the next chapter. 



One of the important potentials of multiprocessor systems 

is the ability to speed up computation by concurrently 

processing independent portions of a given assignment [l, 111. 

Extensive research is being carried out to develop mathematical 

models that can be solved efficiently on parallel processors 

[6]. The first step in developing such multiprocessor models is 

to identify the parallelism within the mathematical formulation 

of the problem. This necessitates a data flow analysis of the 

problem with a subsequent evolution of a '' task graph ". This is 
then allocated to a set of processors by means of a scheduling 

algorithm so as to obtain minimum achievable execution time. 

3.1 Task Graph Attributes 

A task graph represents a set of "jobs" or "computation 

units" arranged in accordance with certain precedence 

constraints. Such a set is generally described by a "finite 

directed acyclic graph" 171 and is assumed to have single entry 

and terminal nodes through which all other nodes may be 

accessed. Task execution times are represented by node weights 

[8]. An example of a task graph is shown (see Figure 3.1). 

In most practical problems, the mathematical nature of the 

model yields a set of closely coupled equations as is also true 

13 
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Figure 3.1 Example of a Task Graph 
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for the prototype problem under consideration. Hence it becomes 

a difficult task to identify not only the areas of mathematical 

parallelism [6] but also integrate these with solution 

techniques ( like ABPC ) under consideration. 

A few important notions must be explicitly stated before 

any attempt is made to outline a systematic procedure for task 

graph development. 

A "data flow graph" is very similar to a task graph except 

that the latter precludes all logical constructs of an incumbent 

program. In its simplest form, a task graph reflects an attempt 

to partition computation tasks in an optimum manner without any 

reference to logic statements which may have a representation in 

an equivalent data flow graph. 

Being very closely related to the mathematical model of the 

system, a task graph is unique and specific to a particular 

application. The same system under different functional 

operations may require an entirely different task layout. 

Even by partitioning the system model into several 

independent paths which may be computed in parallel, there 

exists a "critical path" which presents a set ''lower limit" on 

the minimum achievable execution time. No amount of task 

decentralization in the form of a well balanced task graph or 

processor computing power can overcome the timing constraints 

set by the critical path. It is imperative that the update 

interval of data is greater than or atmost equal to the 

calculation time of the critical path. 
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3.2 Task Graph Development 

A top-down design strategy is adopted in task graph 

development (see Figure 3.2). The system differential equations 

are partitioned and combined with standard integration 

techniques ( ABPC in this case ) to yield a set of difference 

equations. Subsequently, a data flow analysis is made wherein 

each difference equation is further broken up into simpler 

computation units in consonance with the mathematical attributes 

of the system. This procedure of task fragmentation is 

repeatedly continued till elementary computer operations 

( addition, subtraction, multiplication and division ) or basic 

task units result. These are all interconnected and yield a 

complex mesh which is collectively called the "task graph" for 

the application under consideration. An attempt is made to keep 

the overall task graph reasonably balanced so as to preclude 

possibilities of unduly long critical paths. 

To illustrate the above concepts, let us consider one of 

the differential equations having a high degree of cross 

coupling: 

The first step is to make a data flow analysis for the equation 

above. This is done by constructing a function task block l'f12'' 

(see figure 3.3). The nodes in the first level are either data 

constants or values of "k12" and "k-72" at the previous update 

interval. The subsequent levels keep a numerical count of the 

elementary operations involved with "l*" within a node 
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Figure 3.2 Task Graph Development 
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1+, 2- u ! 

Figure 3.3 Function t a s k  block 
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indicating one multiplication. Similarly, 1+,2- indicates a 

total of three operations comprising of one addition and two 

subtractions. Task time is counted on the basis of "time units" 

or "Us. Multiplication and division are assigned a weightage of 

3 "Us compared to addition and subtraction which take 2 TUs. The 

function task block has a total count of 6 operations equaling 

at least 15 TUs. 

. 

The given equation along with the function task block must 

be integrated with the ABPC method. The difference equation to 

be solved becomes: 

Again on the basis of data flow, a track of the flow of 

computation is maintained and the resulting interconnected mesh 

of simple operations obtained constitutes the task graph for the 

equation in question (see figure 3 . 4 ) .  An interesting feature of 

this task graph is that it is non terminating in nature. Apart 

from the data constants, the parameter values are updated in 

every sampling interval. The systematic node description for the 

task graph under consideration is shown in Table 1. Each 

differential equation of the original set is thus fragmented to 

yield a sub task graph which are then interlinked to yield the 

overall task graph for the system. This has been shown in 

Appendix B. 
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TABLE I 

NODE DESCRIPTION FOR TASK GRAPH IN FIGURE 3 . 4  

Node No. Parameter Operation 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
"1 3 
14 
15 
16 
17 
18 

h=constant 
2=data constant 

20=data constant 
f (k12) cn 
0.0 

;;op 

NOP 
Load 
Load 
Load 
NOP 

Load 

/ 
* 
Load *. 

4- 
* 

Load . 
Load 

. . .  
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3.3 Task Natrix 

A task graph for a practical problem is quite imposing in 

its complexity. A "Task Matrix" offers a convenient and concise 

technique for representing a task graph and at the same time 

maintains all precedence constraints. For a faithful 

representation, a task matrix should have the following fields: 

1) Task Field ( T ): It indicates the task number. 

2) Task Enable Field ( E ): It can assume only two 

values - a "HI" indicated by binary "1" and a "LO" indicated by 
a binary "0". Whenever E=l, the corresponding task is enabled. 

3)  Pending Task Queue Field ( Q ): It represents the 

number of tasks pending at each node. It provides a count of the 

immediate predecessor tasks that have to be executed prior to 

self execution. A task unit at a particular level in the task 

graph may be enabled only if the corresponding value of Q = 0. 

4) Successor Field ( S ): This is in array field 

which keeps track of the number of immediate successor tasks at 

each node. 

5)  Weight Field ( W ): It shows the time taken for a 

task defined by the node under consideration to execute. The 

weight field is assigned arbitrarily as the speed of execution 

tends to vary with hardware features of the selected processor. 

However reasonable assumptions are made while assigning weights, 

e.g., task unit defining multiplication must have a larger 

execution time compared that which defines addition. 

The task matrix table for the task graph in Figure 3.1 is 

shown (see Table 2) .  The tasks are numbered from "1" to "8" with 
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TABLE 2 

TASK MATRIX FOR TASK GRAPH IN FIGURE 3.1 

T E Q S W 

1 1 0 4 X 

2 1 0 4 X 

3 1 0 596 X 

4 0 2 7 X 

5 0 1 8 X 

6 0 1 X 

7 0 1 X 

8 0 1 X 

T = TASK NUMBER FIELD. 
E = TASK ENABLE FIELD. 
Q = PENDING TASK QUEUE FIELD. 
S = SUCCESSOR TASK FIELD. 
W = WEIGHT FIELD. 
X = DON’T CARE. 

- 5 -  
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weights being "don't care" denoted by "X". "0" represents the 

input node whereas "*" denotes the terminal node. During start 
of execution any one of the tasks 1,2 and 3 may be executed.and 

this is indicated by E = 1 and Q = 0 in corresponding fields. 

Task 4 has Q = 2 because it has two immediate pending or 

predecessor tasks in tasks 1 and 2. Tasks 5 and 6 are the 

successors of task 3 as shown in the S field. Tasks 6,7 and 8 

terminate in the output node indicated by "*". 

3.4 Scheduling Problem 

The scheduling problem primarily deals with resource 

optimization. Stated simply it reduces to " Given a set of tasks 

or computations along with a set of operational precedence 

relationships that exist between a certain of these tasks, and 

given a set of *k' identical processors, how does one sequence 

or schedule these tasks on the 'k' processors so that they 

execute in minimum time?" [ 8 ] .  By definition a 'scheduler' is an 

algorithm that uniquely specifies which job unit is to be 

serviced next by a resource [ l o ]  and to this end, an efficient 

scheduling algorithm need be developed which undertakes 

efficient task allocat,ion and sequencing. Problems of this type 

are commonly referred to as "minimum execution time 

multiprocessor scheduling problem" [7]. 

3.5 Scheduling Classification 

Task scheduling by itself forms an interesting area of 

research and draws heavily on concepts of graph theory and 

operations research. A number of scheduling strategies are in 
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vogue (see Table 3), each being suitable for a specific 

application. The major class of schedulers are categorized as 

pre-emptive or non pre-emptive. 

A pre-emptive scheduler is capable of selecting and 

assigning a job to a server at any time irrespective of job 

completion, that is, a pre-emptive scheduler assumes that jobs 

are interruptible and will do so if another job of higher 

priority needs service. The overall flexibility of the schedule 

increases due to pre-emption but at the cost of hardware 

overhead and job "set-up" time. On the contrary, a non pre- 

emptive scheduler allows no job-switching, that is, once a job 

is assigned to a resource it has to be executed before another 

job can be accommodated even though it may have a higher 

priority. 

3.6 Approaches to the Scheduling Algoritbm 

The scheduling problem may be approached from two different 

angles. 

(1) Given a task graph and a set of -k' processors, a 

task assignment routine has to be developed that yields a 

description of the tasks done by each processor as a function of 

time. It ensures an optimum processor packing of task units so 

as to yield maximum resource utilization and at the same time 

attain a maximum speed of execution. 

(2) Given a task graph, the scheduler keeps the 

option of available hardware open and selects an optimum number 

of processors for executing the task graph in minimum time. The 
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TABLE 3 

SCHEDULING TECHNIQUES 

Scheduler Name Type of Operation 

FCFS First-come-first-served 

SXFS Shortest-job-first 

LCFS Least-completed-first 

EDFS Earliestdue-time-first 

HSFS Highest-static-priority-first 

RR Round robin 
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number of available processors in this case is a variable 

parameter which is optimally selected by the scheduling 

algorithm. This approach pre-supposes a flexible architecture 

for its realization since it needs a variable number of 

processors and sacrifices hardware utilization to get a higher 

throughput. 

The scheduling algorithm that is developed is primarily 

based on the aforementioned second approach. 

3.7 Assumptions in developing the Scheduling Algorithm 

The scheduling algorithm developed is based on the 

following assumptions: 

1) Scheduling is non pre-emptive and all task 

allocation is static. 

2)  

3 )  Interprocessor and intraprocessor communication 

Execution time of each task is known apriori. 

times are negligible. 

4 )  Task weights are assigned arbitrarily but 

uniformity is maintained between comparable tasks. Tasks 

requiring longer CPU time (like multiplication) have been 

assigned larger weights compared to tasks requiring lower CPU 

time (like register move, addition etc. ). Such arbitrariness is 

primarily due to lack of well defined execution-time standards 

on account of the widely varying 

currently. Moreover, conceptually the algorithmic implementation 

is independent of the weights assigned to the task units. 

processor types available 
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3.8 Scheduling Algorithm 

The scheduling algorithm (originally credited to Oschner) 

maps the task graph onto a task matrix and seeks to obtain an 

optimum schedule by means of elementary operations on the task 

matrix. The step by step detail for the algorithm is as follows: 

A task matrix is defined by five fields T,E,Q,S,W. 

A task is enabled only when E-1 and 0-0 

An enabled task can be allocated to a free PE 

1) 

2)  

3)  

only. 

4) A task unit assigned to a PE has its E field 

decremented to zero, that is, E=O for an assigned task unit. 

5 )  After task completion, the successor or S field of 

the task is examined so as to decrement the Q field of each 

successor. 

6) 

decrement are enabled. 

7)  

8 )  

All successor tasks having 9-0 as a result of 

Repeated execution whenever a PE becomes idle. 

Scheduling is complete when all tasks have E=O and 

Q=O . 
As a specific example, a simple task graph and associated 

task matrix is considered (see Table 4 ) .  Initially any one of 

tasks 1, 2 and 3 may be allocated depending on the number of 

processors available. Assuming that all tasks are assigned, 

execution ( timegrocessing in Pascal routine - Appendix D ) 

begins and the respective "E" fields are reduced to zero (see 

Table 5). Task 1 having minimum weight is completed first so 

that the PE to which it is assigned is the first to become idle. 



2 9  

TABLE 4 

TASK GRAPH AND TASK MATRIX 

T E Q S W 
~~ 

1 1 0 4 10 

2 1 0 4 20 

3 1 0 30 

4 0 2 10 t 
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TABLE 5 

ELEMENTARY OPERATION ON TASK 

MATRIX 

T E Q S W 

1 0 0 4 10 

2 0 0 4 20 

3 0 0 30 

4 0 2 10 

TABLE 6 

ELEMENTARY OPERATION ON TASK 

MATRIX 

T E Q S W 

1 0 0 4 10 

2 0 0 4 20 

3 0 0 30 

4 0 1 10 
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When this stage is reached, the scheduling process takes over. 

The successor field of task 1 is examined which points to task 

4 .  The scheduler now decrements the Q field of task 4 thereby 

making it equal to 1 (see table 6). 

Even though task 1 is complete, task 4 cannot be assigned 

until task 2 ends. So task execution starts again with PE to 

which task 1 was assigned remaining idle. When task 2 is 

completed, the scheduler looks at the corresponding S field 

which again points to task 4 .  The Q field of task 4 is 

decremented to zero as a result. The scheduler now sets the E 

field of task 4 thereby enabling it (see Table 7). Task 4 is 

assigned to an available PE and its E field is reduced to zero. 

When all tasks have been assigned and execution is complete, the 

E and Q fields of all tasks equal zero and the resulting task 

matrix is shown in Table 8. 

From this example, it becomes clear that by elementary 

operations ( like look up, decrement etc. ) it is possible to 

keep a dynamic track of a variable number of tasks and PES. The 

resulting information is adequate to set up a timing diagram or 

"Gantt Chart" schedule for each PE which is of considerable help 

in calculating the overall time necessary to execute the task 

graph. By the varying the number of processors used, 

considerable insight on overall performance is obtained. These 

factors are discussed subsequently. 
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TABLE 7 

ELEMENTARY OPERATION ON TASK 

MATRIX 

T E Q S W 

1 0 0 4 10 

2 0 0 4 20 

3 0 0 30 

4 1 0 10 

TABLE 8 

ELEMENTARY OPERATION ON TASK 

MATRIX 

T E Q S W 



SIMULATION AND PgRpORHANcE EVALUATION 

The evaluation of a computer system generally involves the 

following classes of considerations: 

1) Performance 

2) cost 

3)  User convenience 

4) Reliability 

An attempt is made here to provide a critical appraisal of 

overall performance improvement when the system under 

consideration is subjected to the previously described parallel 

model of implementation. 

4.1 Performance Evaluation Criterion 

The primary requirements for performance evaluation are: 

1) Analysis 

2)  Simulation 

3)  Measurements 

Analysis and simulation is accomplished by partitioning the 

system differential equations into task units which are then 

allocated to a variable set of processors. The merit of the 

scheme is judged on the basis of the following performance 

indices : 

33 
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. 1) Execution time 

2)  Percentage speed-up 

3)  Percentage efficiency 

Execution time may be defined as the time required by a 

given set of processors to execute the task graph in question. 

For a real-time control problem, the execution time is of great 

significance and must be-less than the periodic update time. 

The increase in speed of computation with a larger number 

of processors compared to that of an uniprocessor is generally 

denoted by the percentage speed-up factor. If "t" is the time 

required to execute a task graph using a set of 

and ltmtt equals the time to do the same using a single processor, 

then speed-up factor [9] is given by: 

"p" processors 

speed-up = (m / t) 

The percentage efficiency shows the overall resource 

utilization for a parallel implementation. Mathematically, 

X efficiency = (m / tp) * 100 

Percentage efficiency is a measure of the idle time of the PES. 

It has a value of 100% for an uniprocessor system as can be 

verified from the mathematical expression. 

4.2 Assumptions in Simulation 

To facilitate and simplify analysis, the following model 

for a parallel implementation is adopted: 

1) an unlimited number of processors is available. 
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2) each PE is capable of evaluating any of the four 

fundamental arithmetic operations (+, -, *, />. 

3)  data and memory alignment times are neglected. 

Although assumptions 1) and 3)  appear unrealistic, 

decreasing hardware costs are giving rise to large 

multiprocessor systems which have almost an unlimited number of 

processors , eg., The Hypercube, The Butterfly Computer which 

has 256 PES with scope for further expansion. Similarly, data 

and memory time penalties simply offset the computation results 

by a fixed factor and therefore do not form a barrier to the 

conceptual implementation of a parallel model. 

4.3 R e s u l t s  of Simulation 

The task flow pattern for the linear system is simulated 

using a variable number of PES and at each stage the 

aforementioned performance indices are recorded. A graphical 

representation of these indicate interesting highlights . 
The execution time curve ( see Figure 4.1 ) droops sharply 

as the number of processors increase showing that with increase 

in the number of PES the task completion time rapidly decreases. 

The curve has a characteristic hump in the vicinity of ten PES. 

Any further attempt to boost computing power by increasing the 

number of PES has negligible effect thereby indicating that time 

corresponding to critical path has been reached. 

The percentage efficiency curve (see figure 4.2) initially 

remains at a high value which implies that available tasks are 

adequate to keep the set of processors occupied throughout the 
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update interval. However, for more than five PES it rapidly 

decreases owing to the idle time generated. This trend continues 

till for ten PES the curve has a local maxima corresponding to a 

percentage efficiency of approximately 85X. Beyond this, the 

efficiency curve again toggles down. The logical inference drawn 

is that for a set of ten PES a compromise is affected between 

idle time and speed of execution whereby resource efficiency is 

sacrificed to obtain a greater speed advantage. This is also 

corroborated by the speed up curve (see Figure 4 . 3 )  which 

indicates that beyond ten PES the speed up ratio remains 

unaltered. The performance indices therefore point to ten PES as 

an optimum selection for the task graph under consideration. The 

task allocation scheme for the optimum number of PES is 

generated as output by the scheduling program. A Gantt Chart or 

a processor timing diagram can be set up from the results. It 

may be noted that a close processor 

overall idle time is negligible. The task graph, task matrix, 

program output and Gantt chart are listed in Appendix B. 

packing of tasks exist and 
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AR- AND HARDWARE DESIGN 

Conventional computers solve problems one step at a time. 

Advanced parallel computers are able to execute independent 

parts of the problem concurrently thereby reducing overall 

execution time [13 ] .  The success of a parallel implementation 

depends entirely on the hardware support and to this end an 

efficient architecture is proposed. 

5.1 Architectural Requirements 

Computer architecture encompasses a very wide area of 

knowledge bounded by ever changing innovations. It is extremely 

difficult to define all attributes necessary to justify a 

particular architecture. In this thesis research, a 

multiprocessor parallel algorithmic implementation has been 

proposed which in turn needs a truly parallel hardware back up. 

Flexibility is one of most desirable features for such an 

architecture. A task graph corresponds uniquely to an 

application . Any changes in application demands a new task 
graph which in turn requires an altered hardware support. 

Hence, a truly parallel machine must have hardware upgradability 

and reconfigurability. Popular parallel machines like the 

Butterfly Computer, Hypercube, REMPS [ 1 4 ,  151 etc. incorporate 
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this philosophy. Current researches on the FAST at the 

University of Alabama also re-emphasizes this point. 

The PE system architecture must have a high degree of 

pipelining to reduce intermediate idle time. It is also 

imperative for each PE to have an on-chip in addition to global 

memory. This reduces the conventional "Von Neumann" bottleneck 

and increases computing power. 

5.2 Pg system Design 

A large number of PES with excellent functional features 

are currently available [16, 171. However, a futuristic PE 

design is proposed here (see Figure 5.1). A gallium arsenide 

RISC engine is coupled with a floating point coprocessor unit 

and constitutes the core of the processing element [18, 191. 

These are connected by instruction and data buses to respective 

caches which virtually eliminates all global memory accesses 

except perhaps at the pre-processing stage [20 ] .  Separate 

instruction and data caches reduce cache-contention and internal 

bus traffic. The PE interfaces with the system bus u s i n g  I:. bus 

controller. 

5.3 Technology Selection 

An ambitious proposition using WSI GaAs is recommended. 

Although a great majority of the integrated circuits are 

fabricated with silicon, GaAs technology offers several 

advantages [20] :  

1) 

fastest silicon chips. 

GaAs chips are five to ten times faster than 
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2) It is radiation "hard" and operates over a wide 

temperature range ( -2000~ to +2000c). 

3 )  It is also better suited for efficient 

integration with electronic and optical components. 

Although high cost and low levels of integration are major 

drawbacks, these are expected to be eliminated as the technology 

matures. 

Wafer-scale-integration denotes the level of integration 

attained when an entire wafer is used is used to fabricate a 

circuit. Currently WSI is the highest level of integration for 

monolithic circuits [21]. The technology is still plagued by 

problems of heat dissipation and low production yield. However, 

higher attainable density levels and fewer off chip connections 

are major factors in proposing this futuristic technology that 

has already started making inroads in the chip market [22]. 

5.4 Interconnection and System Layout 

A hierarchical fiber optic star (see Figure 5 .2 )  is 

proposed as a suitable.system layout and corresponds to the FAST 

architecture [23]. Such a structure is easily expandable and 

provides an inexhaustible source of computing power. Each 

tentacle of the star ends in individual processing modules which 

may be specialized to perform functions like error checking, 

I / O ,  communication, numeric processing etc. Such a system has 

the option of having heterogeneous modules or homogeneous 

modules depending upon the application. Each fiber optic star 

cluster may be configured to form specialized hardware modules 
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for efficient task execution. Optical fiber communication links 

are optimally compatible with GaAs WSI technology and is 

sufficient to meet the highest transfer rates [24]. 

5.5 Future Directions 

Although a futuristic hardware support is proposed, 

architectural innovations may still be implemented to attain 

higher modularity and efficiency. Considerable work needs to be 

done in the development of parallel software bases which still 

happens to be inherently sequential [25] .  The setting up of a 

task graph for different applications is wasteful of manhours. 

Automated software packages need to be developed for performing 

domain and functional decomposition. The future will undoubtedly 

be affected by improvements in semiconductor technology. 

However, any drastic performance improvement would need a 

technological breakthrough, like the development of high 

temperature superconductors etc., but the basic tenets of 

parallel processing are going to hold good for some time to 

come. 
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APPENDIX A 

SOLUTION METHOD FOR OPTIMAL CONTROL PRO- USING 
PWRlX RICATTI EQUATIONS 



Several techniques are available for the solution of 

optimal control problems. A widely used method involves the 

setting up of Matrix Ricatti equations. 

The state equations are : 

and the performance measure to be minimised is 

where r(t) is the desired value of the state vector. H and Q are 

positive semidefinite matrices, and R is real symmetric and 

positive definite. .The final time "tf" is fixed. 

The Hamiltonian is given by 

h(dt),u(t),p(t)st) = 0.5 Ildt) - dt)$(t) 

llu( fR( t) + p T(t)A(t)x(t) +p T( t)B(t)u(t) 

The costate equations are 

and the algebraic relations to be satisfied are 

4 9  

0 = R(t)u*(t) + BT(t)p*(t) 
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I 

This yields the optimal control law in terms of the costate 

equation as 

u*( t) = -R-l( t)BT( t)p*( t) 

Instead of computing the STM, an easier computational 

alternative is to express 

Differentiating both sides with respect to "t", we get 

* Substituting for i*(t) and i*(t) and then eliminating p (t), 

the following equations, conmonly referred to as the Matrix 

Ricatti equations, are obtained 

K(th -X(t)A(t) - AT(t)K(t) - Q(t) + K(t)B(t)R"(t)BT(t)K(t) 

and 

&t) = -[AT(t) - K(t)B(t)R'l(t)BT(t)]s(t) + Q(t)r(t) 

I t  I t  K is a symmetric matrix of order "n" by 'In" and "s" is a 

I t  I t  n by 1 vector. Hence a set of "[n{n+l)/2]+n" first-order 

differential equations need to solved. The boundary conditions 

are 
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As all x*(tf) and r(tf) satisfy these equations, the boundary 

conditions are 

and 

The optimal control law may be computed from the values of 

"K" and "s" by means of standard integration techniques. 



APPENDIX B 

TASK GRAPE ATJXIBUTFS FOR HIGBLY-COUPLKD 
LINEAR SYSTEW EQUATIONS 
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Node N o .  Parameter Operat ion 
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Node no. Parameter Operation 
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TASK ALLOCAT I ON 

THE PJUMEEF; O F  FcROCESSORS USED= it:) 

THE NUMEER O F  OEFINEO TASI.::S=45 

p r o c e s s o r  C 1 1  assigned task C l l  
processor C 2 1  a s s i g n e d  task t 2 1  
p r o c e s s o r  CZJ a s s i g n e d  task C 3 1  
p r o c e s s o r  C 4 1  a s s i g n e d  task C 4 1  
p r o c e s s o r  C51 a s s i g n e d  task C51 
processor Cbl a s s i g n e d  task C 6 1  
p r o c e s s o r  C'71 a s s i g n e d  task C71 
p i - u c e s s o r  C 8 3  a s z i g n e d  task C 8 1  
p r s c e s s o r  C 9 3  a s s i q n e d  task:: C'?:! 
p r o c e s s o r  C 1 5 1  a s s i g n e d  tasl:: C 1 0 1  
p r o c s s s o r  i 1 3  a s s i g n e d  task [ I l l  
processor  t Z 3  a s . s i g n e d  t a d :  t 121 
p r a c e s s o r  i 3 1  a s s i g n e d  task: C 1 Z 3  
processor C 4 1  a s s i g n e d  tasi:: C 1 4 1  
p r o c e s s o r  E 5 1  a s s i g n e d  task C 1 5 1  
processor Cbl a s s i g n e d  task C 1 6 1  
p r o c e s s c r  C 7 1  a s s i g n e d  task:: C 1 7 1  
processor C 8 1  a s z i g n e d  t a s k :  I: !81 
p r o c e s s o r  C 4 1  sssigned tztsC;: C 1 4 2  
processor C I C 1  as;si gned ~as1:: C2!::jl 
p r o c e s s o r  C 7 2  assigned task:: C272 
praces ; - ,o r  CY:! assigned task: C 2 8 1  
p r o c e s s o r  C 7 1  a s ; s i g n e d  task L 3 7 1  
proce.s.sor C 1 1  a s s i g n e d  task: E 2 1  1 
p r o c e s s o r  C21 a s s i g n e d  task C223 
processor C 9 1  a s s i g n e d  task: C381 
p r o c e s s o r  C I I  a s s i g n e d  task: C2Jl 
p r o c e s s o r  C 4 1  a s s i g n e d  tasI:: C X l  
p r o c e s s o r  Ccj3 a s s i g n e d  task C 3 1 1  
processor E71 a s s i g n e d  ta,iiI:: C441 
p r o c e s s o r  number C Y 1  i d l e  fc j r  1 TUS 
p r a c e s s n r  CZI a s s i g n e d  tasi.:: C291 
p r o c e s s o r  C 8 1  a s s i g n e d  ts.sC:! C3i31 
processor C91 a s s i g n e d  task: C 3 2 1  
p r o c e s s o r  number CiC!I i d l e  fo r  1 T U S  
processor C 1 1  a s s i g n e d  task:: C351 
p r o c e s s o r  number C'71 id l e  .for 1 T U S  
pracessor  number C1C:il i d l e  f o r  2 TlJS 
p r o c e s s i i l r  CZI ass1 gned tasC:: CX33 
p r o c e s s o r  C 3 1  aszigned task:: C 2 4 1  
p r o c e s s o r  C47 assigned task C 3 b J  
p r o c e s s o r  CS1 a s s i g n e d  task C391 
p r o c e s s o r  C&l a s s i q n e d  t a s k  C4311 
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pr-ocessor number C 7 3  i d l e  +o r  2 TUS 
procassor number C 9 1  i d l e  +o r  1 T U S  
processor number E l 0 3  i d l e  f o r  3 TUS 
processor C 7 1  assigned task  C 4 0 1  
processor number C 8 1  i d l e  f o r  1 TUS 
processor number C 3 1  i d l e  f o r  2 TUS 
processor number C l Q l  i d l e  f o r  4 TUS 
processor C i 1  assigned task C337 
processor C 2 1  assigned task: E431 
processor number C 4 1  i d l e  f o r  1 TU3 
processor number Cejl i d l e  f o r  1 TUS 
processor number C81 i d l e  f o r  2 T U S  
processor number C 9 1  i d l e  f o r  3 TUS 
processor number [IC)] i d l e  f o r  5 TU5 
proceszor C 3 1  assiuned t a s k  C341 
processor E 4 7  asjsigned task E451 
processor numoer f5J i d l e  f o r  1 TIJS 
processor number Ccjl i d l e  f o r  2 TUS 
processor number til i d l s  f o r  1 TUS 
processor number C 8 1  i d l e  +or 3 TUS 
processor number C 9 1  i d l e  f o r  4 TUS 
processor number C 1 0 1  i d l e  i a r  b TUS 
processor number C Z I  idle f o r  1 TUS 
processor number E 5 1  i d l e  f o r  2 TUS 
processor number Cbj i d l e  f o r  3 TUS 
processor number C'73 i d l e  f o r  2 i l l s  
processor nc,mber LEI:! i d l e  fur  4 TUS 

' processor number C 5 1  i d l e  f o r  5 TFS 
processor number L l G I  i d l e  +or  7 'TUS 
processor C 1 1  assigned task C427 

Schedule Complete 
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~ X l * L * t t * a * * ~ * * * * * t * ! ~ * ~ * ~ * * * * * * * * * * ~ * * * * * ~ * ~ l ~ * ~ * * ~ * ~ * ~ * * *  
The  following F'ascal routine allocates tasks to a set of 
processors inaccordance with the scheduling algorithm 
already outlined in Chapter 3. The number of processing 
elements is treated as a variable pararneter.The program 
requires as input the fallowing: 

1) The number of available PES denoted by 'In" 
2) The number of defined tasks denoted by "tn" 
3)  The task matrix which is read from an input 

data file 
The program outputs the delay time o f  each processor and 
also the task: numbers which are assigned to a particular 
processor. It keeps track of the time schedule o f  each 
processor by providing relevant information. 

t * Z * * * * t ~ * * * * * * * * * * * ~ * * * * * ~ ~ * * t ~ * * * t ~ ~ * * * t * * * * $ ~ * ~ ~ : ~ ~ * ~ ~ ~ ~ ~ ~  

program processor-schedul ing; 

const 
ma:.: -succ='J; 

.C ma:.:-succ is the maximum number 0-f successors that can 
be present at each node of the task graph. It can be 
predefined to assume any v a l u e . I n  this case it has been 
defined to be equal to seven as this is adequate far the 
task graph under consideration. :. 

type 
processor =r ecor d 

time: inteqer: *C Each processor is defined as a record 2. 
task: integer; .C the boolean field denotes whether a 3. 
active:boolean; < processor is active i inactive 3 

end; 
proc= arrayC1. .201 of processor; .I ma:timum number of F'Es 3. 
arraytype- arrayC1. .SO3 of integer; 
successorarray=arrayLl. .50,1. .503 of integer; 

var 
ii,tn,n,inp,z,is:integer; 
e,q,w,t:arraytvpe; 
SLIC : s u c c e ~ s o r  array; 
p:proc; 
f ilvarl, f ilvar2: text: 
f 1,f 2:strinqC123; 
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p r o c e d u r e  I N  I f I kL I SE : 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
T h i s  p r o c e d u r e  i n t i a l i s e s  a l l  t h e  PES b y  making  t h e  
a c t i v e  f i e l d  f a l s e  a n d  s e t t i n g  task t i m e  and number = 0. 
I t  p r o v i d e s  the s c h e d u l e r  w i t h  a set o f  PEs that are 
r e a d y  t u  be a s s i g n e d  t o  i n c u m b e n t  tasks. 
****~******t*t*****1~**~~L~*$********~*******1******~~ 

v a r  
k i : i n t e g e r ;  

5 

b e g i n  
f o r  k i : = l  t o  n do 

b e g i n  
p t k i  3 .  time: =I.:); 

p t k i l . t a s k : = C ) ;  
p C k i  3 .  a c t i v e :  =f a1 se: 

end;  
e n d ;  

p r o c e d u r e  SCHEDULE: 

~ ~ * ~ t * ~ 2 * ~ * * * * * * * * * * b * * * ~ * * * ~ * * * * * b * ~ * ~ * * * ~ * ~ ~ * ~ ~ * ~ * 2 * * ~ ~ ~  
T h i s  p r o c e d u r e  a l loca tes  a set of a v a i l a b l e  tasks t o  a 
set o f  processors t h a t  are  i n a c t i v e  o r  svai lable .  A t : t r r  
i n i t i a l  a s s i g n m e n t ,  i t  c h e c k s  whether all tasks have been 
s c h e d u l e d  by i n v o k i n g  t h e  p r o c e d u r e  c h e c k - s c h e d u l  e. 
* * * X L t * * t ~ ~ * * * ~ ~ ~ * # K * # * * * * * * * * t ~ * $ * * * * * * * * ~ ~ * * * * * t * ~ * * ~ * ~ * ~ ~  

l a b e l  
s t a r t , m a r k ;  
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p r o c e d u r e  T I  ME-FROCESS ING;  

~ ~ * * * * * * * * * * * * * ~ ~ Y * * * * * ~ * * * * * * * * * * * * * * ~ * * * * * * * ~ * * * * ~ * * *  
T h i s  p r o c e d u r e  d e c r e m e n t s  t h e  t i m e  f i e l d  of  e a c h  
p r o c e s s o r  a n d  a f t e r  e a c h  d e c r e m e n t  make5 a s e l f  c h e c k  
t o  a s c e r t a i n  w h e t h e r  a n y  p r o c e s s o r  is i d l e .  I f  a l l  
p r o c e s s o r s  a re  active t h e n  i t  c o n t i n u e s  d e c r e m e n t i n q .  
I f  a n y  p r o c e s s o r  is i d l e ,  i t  i n v o k e s  t h e  p r o c e d u r e  
reallocate f o r  rea l loca t ion  of  a n y  a v a i l a b l e  task.: t o  
t h e  i d l e  p r o c e s s o r  ,*' p r o c e s s o r s .  
* * ~ t * l * t ~ * ~ * * * * f * * * * * * * ~ * ~ ~ * ~ * ~ * ~ ~ ~ ~ ~ * * * * ~ * * ~ ~ ~ * ~ * * * ~ .  

1 ? b e l  
sl 9 52;  

v a r  
k 1 temp  1 t emp , -i k I::. n o - s ~ i c c .  ma:.: -i t : i n t eger : 

p r o c e d u r e  REALLOCATE; 

~ ~ * ~ * * * * * * * * * * * l * * * l t * ~ * * * * * * ~ * * ~ * * * * ~ * * * * * * * ~ f * ~ ~ * * ~ ~ ~ * *  
T h i s  p r o c e d u r e  h a n d l e s  s i t u a t i o n s  when ~501ne p r o c e s s o r s  
become f r e e  d u e  t o  task c o m p l e t i o n  w h i l e  some a re  s t i l l  
a c t i v e .  The idle pracessors are  assigned t o  incumbent 
tasks. If n o  tasks a r e  a v a i l a b l e ,  t h e n  i d l e  t i m e  
is r e c o r d e d  f o r  t h e  i n a c t i v e  p r o c e s s o r s .  A f t e r  p o s n i b : l e  
r ea l loca t ion ,  t h e  main  s c h e d u l i n g  p r o g r a m  is a g a i n  i n v o k e d .  
t * * X * l * t * * * * * * * % * Y * * * * * * l * ~ * * * * ~ * * ~ : ~ * ~ * * * * * ~ : ~ * ~ * * * * * * ~ ~ * * ~ ~  

v a r  
1 1 , d e l a y : i n t e y e r ;  
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I 

I 

. 
begin .: of REALLOCATE 3 

ll:=l; 
f1:if pC11l.time .::= C! then 

begin 
if pC113,time .::: 0 then 

begin 
delay:= -IpCllI.time!; 

writeln(filvar2,3 processor number C'.11,21 idle for ',delay, ' T U S ' ) ;  
end; 
11:=11+1; 
if 1 1  ::. n then 
S C HED U LE 
else gcto f1 : 

end 

begin 
else 

11 :=11+1: 
if 11 > n then 

SCHEDULE ; 
begin 

end 

got0 .f 1; 
end: 

else 

end j .: OS REALLOCAT'E 3. 

begin .: o f  TIME-PROCESSING 2. 
k : = l ;  
sl: pCkl.time:=pCkl. time-1: 
k:=k+l; 
if k 3 n then 

begin 
l:=i: 
s2:if pC1l.time = (1) then 

begin 
pC11. active: =f a1 se; 
templ:=pClI.ta~,C::; 
no-s;ucc:= sucLtemo1, 11: 
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I 

ma:< -it : =nc)-succ+l; 
f o r  _ikk:=2 t o  m a x - i t  do 

beg in  
temp : =sue C t e m p  1 -i 1: C:: 1 : 
if temp .::> fJ then 

beg in  
q Ctemp 3 :  =qt  temp 3-1 : 

i f  qtternpJ=C) then  e C t e m p I : = l ;  
e n d :  

end ; 
1:=141; 
i f  1 :::. n then 

else 
REALLOCATE 

goto 52; 
end 

beg in  
else 

1:=141; 
i f  1 :::. n then 

begin 

end 
REALLOCATE: 

else 
goto 52; 

e n d :  
end 

beg in  

end; 

el ss 

goto 51: 

end; 
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p r o c e d u r e  CHECK -SCHEDULE; 

~ ~ * * * * * * * * * * * * * * * * * S * * * ~ * * * * * * * * * * * * * * * : ~ * * * * * ~ ~ * * * * * ~ ~ * ~  
T h i s  p r o c e d u r e  e x a m i n e s  t h e  task m a t r i x  t o  e n s u r e  t h a t  
s c h e d u l i n g  is c o m p l e t e ,  t h a t  is, t h e  task q r a p h  h a s  b e e n  
c o m p l e t e l y  e x e c u t e d .  I f  n o t .  i t  invo1::es p r o c e d u r e  
t i m e g r o c e s s i n q  t o  b e g i n  t a s k  e x e c u t i o n  o n c e  a g a i n .  
I f  a l l o c a t i o n  is c o m p l e t e ,  i t  i n d i c a t e s  t h i s  b y  d i s p l a y i n g  
" S c h e d u l e  C o m p l e t e .  'I 

X * * * * * * * * * * * * * ~ * * t * * ~ * * * * ~ ~ ~ * * * * * * * * * ~ * * * * * ~ * ~ * * * * * * ~ ~ ~ ~  

1 a b e l  
11; 

v a r  . .  
JJ: i n t e g e r :  

b e g i n  
j j := l ;  
11: i f  e C j j J = ( : ) )  a n d  I q C j j 3 = 0 )  t h e n  

b e g i n  
j j : =j j + 1 : 
i f  jj 1:. t n  t h e n  

b e g i n  

e n d  
else 

b e g i n  

e n d ;  

w r i t e l n  ( f i lvat-2,  ' S c h e d u l e  Cornplete ' l :  

g o t 0  11: 

e n d  

begin 

e n d ;  

else 

TIME-F'HOCESSING: 

e n d  j 
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i 

beqin .: of SCHEDULE 2. 
i:=I; 
j:=l; 
start: if j 3 n then 

CHECK-SCHEDULE : 
begin 

end 

begin 
else 

if pCj1,active = f a l s e  then 
beqin 

if eCil=l then 
begin 

pC-il. tirne:=wCi7: 
pC-il.active:=trueg 
pC-il. tasC:::=tfi 1; 
eCi 1: =il; 

i:=i+l= 9 

writeln(filvar2,' processor C',j,?I assigned task:: C 7 q i p  ' 7 1 7 ) :  

j:=j+l; 
goto s t a r t ;  

end 

beqin 
else 

1:: 1:: : = i ; 
mark: iS eCkC::I:=l then 

begin 
p C j 3 .  ti me: =w C 1::k:: 1 : 
pCjl.active:=true; 
p C j  3 . task:: : =t C I::I:: 7 ; 
e I: k I:: 1 : =(I) ; 

j: =j+l ; 
gotc start; 

writeln(filvar2,' prcrcessor C ' , - i . ' l  assiqned task C ' , k l : : . ' J 7 j ;  

end 

begin 
else 

i f  qCI::C::l =(I then 
begin 

k 1; : = 1:; I:: + 1 5 
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if ki:: 1:. t n  then 
beg in  

end 

beg in  

end; 

CHECK-SCHEDULE ; 

else 

goto mar I.:: : 

end 

begin  
c:: k : = I.:: I:: + 1. ; 
if ki:: :::. tn %hen 

beg in  

end 

begin  

end; 

else 

CHEC t::: -SC HE5 U L E : 

el 5e 

goto m a r k :  

end; 
end; 

end; 
end 

el se 
begin  

-i : =j+l ; 
goto start: 

end; 
end: 

end; 
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end. 

begin .:of M A I N 3  
writeln (‘input number o f  pracesrurs’ 1 : 
readln (n); 
writeln(’ SELECT INPUT DATA FILE ’ ) j  
writeln(’ OPTIONS-Tl.DAT/T2.DAT ’ ) ;  

readln(f1); 
assign (f  i lvar 1. f 1) ; 
reset(filvar1): 
writeln(’ SELECT OUTPUT DATA FILE ’ 1 ;  
writeln(’ OPTIONS- Rl.DAT/F;2.DAT ’ ) ;  

readln ( f a )  : 
assi qn if i lvar22 f 2) ; 
rewriteifilvar2): 
writeln (f ilvar2, ’ TASK ALLOCGTION ’ )  ; 
writsln (f i lvar2. ’THE blUMBER O F  FFXICESSOES USED=’ ,  tr) ; 
readlnifilvar1,tn); 
writelnifilvar2. ’THE NUMBER OF DEFINED TASKS=’, tns: 
for ii:=l to tn do 
begin 

end ; 
for ii:=l to tn do 

t Ci  i 3 : =i i : 

begin 

end; 
for ii:=l to tn do 

readl n ( +  i lvar 1. el: i i 3 > ; 

begin 

end; 
for ii:=l to tn do 

readl n ( f  i 1 var  1, q C  i i 1 ;I : 

begin 
for i s : = l  to ma:.:-succ do 

begin 

end ; 
r @ad 1 n ( f i 1 var 1 . suc C i i . i s 3 1 : 

end; 
for ii:=l to tn do 

begin 

end; 
INITIALISE: 
SCHEDULE; 
clase(filvar2>: 

readl n < f i 1 var 1, wT_ i i 1 i : 

I 


